

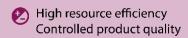
Welcome and Introduction

SIMPLIFY consortium

SIMPLIFY consortium

- KU Leuven: Tom Van Gerven, Ariana Bampouli & Ruben Dewes
- NTUA: Georgios Stefanidis, Ioanna Tzortzi & Katarina Zerva
- Modena University: Cristina Leonelli, Paolo Veronesi, Enrico Paradisi, Elena Colombini
- TU Dortmund: Sebastian Engell, Annika Schmidtpeter, Petra Marciniak, Max Cegla, Robin Semrau, Filippo Tamagnini
- Fraunhofer ICT: Aleksandra Buczko & Simon Kemmerling
- Muegge: Joachim Schneider & Marcus Reichmann
- Weber Ultrasonics: Thomas Dreyer & Martina Gillock-Karner
- Quantis: Tereza Lévová
- Dynergie: Cédric Raoul
- Coatex: Yves Matter & Jean-Marc Suau
- Arkema: Cécile Lutz, Jean-Luc Dubois, Mafalda Valdez, Heidi Ramirez
- Colorobbia: Giovanni Baldi, Laura Niccolai & Valentina Dami

Context


- Sonication and Microwave
 <u>Processing of Material Feedstock</u>
- Main motivation: alternative energy forms – ultrasound (US) and microwaves (MW) – can act as enablers for the transition to flexible continuous processing of solids or viscous-phase containing processes, powered by electricity from renewable sources.

500 years ago till now Conventional processes: batch or CSTR large reactors mechanical mixing heat transfer by conduction · limited process control Low resource efficiency Uncontrolled product quality

SIMPLIFY inlet outlet

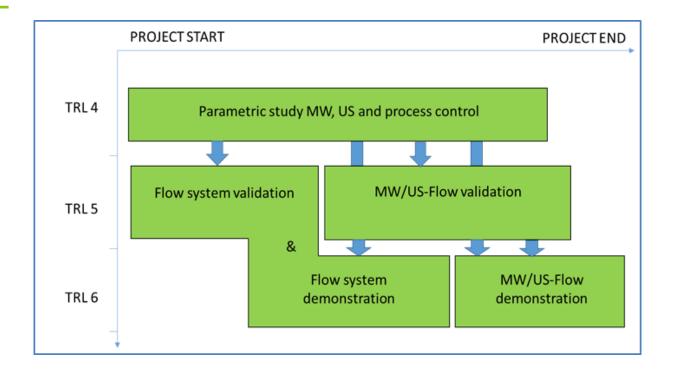
Intensified processes:

- continuous flow
- alternative energy sources for mass, heat and momentum transfer
- precise process control

Case-studies

SIMPLIFY has selected three major cases of specialty processes to work on:

- The class of chemical processes involving highly viscous streams, with MW/US-assisted reactive extrusion of polyurethane as representative;
- The class of chemical processes involving suspensions, with
 - US/MW-assisted reactive crystallization of zeolite microparticles in a continuous oscillatory baffle reactor (COBR);
 - MW/US-assisted reactive crystallization of titania nanoparticle synthesis in a plug flow reactor (PFR).



Project Approach

- to optimise, validate and demonstrate the use of alternative energy forms (US and MW)
- to design, develop and optimize the transition from batch to flow process assisted by alternative energy forms (US, MW)
- to bring in process control at every stage of industrial implementation, based on prior process control strategy development
- to ensure flexibility in the use of electric power in chemical processes
- to execute a full sustainability and techno-economic assessment of the validated and demonstrated processes and to exploit the obtained knowledge in other processes in the chemical industry

Project Approach

THANK YOU for your attention!

Questions?