Lignin Biorefinery Approach using Electrochemical Flow

Concept

LIBERATE will deliver a pilot scale electrochemical plant to demonstrate the commercial opportunities of converting low cost lignin feedstock in high value biosustainable chemicals.

Overview LIBERATE

H2020-CE-SPIRE-02-2018

Grant agreement n° 820735

• Total Budget: **10.047.735** €

• EU contribution: **8.763.489** €

• Duration: **09/2022**

Coordinator: LEITAT

State of the art

LIBERATE processes

Main Objectives

- 1. Kraft lignin \rightarrow 7% yield of Vanillin
- 2. Organosolv lignin \rightarrow > 35% yield of Phenolic derivate
- 3. Cyclohexanol \rightarrow up to 80% of propyl adipic acid
- 4. A biorefinery process:
 - Renewable energy fluctuations without loss in efficiency
 - Better energy efficiency (95% improvement) and Resource efficiency (350% improvement)
 - 29 times less CO₂ than the conventional petrochemical alternatives.

Time Line

Value Chain

OXILIS

What we have achieved?

Organosolv Lignins

- Production of different organosolv lignins from softwood, hardwood and herbaceous biomass under various fractionation conditions and staged lignin precipitation for improved electrochemical depolymerisation efficiency.
- Validation of fractionation conditions on the electrochemical lignin depolymerisation behaviour revealed differences in depolymerisation rates.

What we have achieved?

Electrochemical Reactors

- Filter-press reactor and tubular reactors designed.
- Electrode materials and shapes were performed using different techniques, such as additive manufacturing or chemical vapor deposition.
- The electrodes surviving more than 15 days working in the reaction media at currents up to 240 mA/cm² without micro- or macroscopic corrosion or significant loss of efficiency.
- Reactors are in progress to be tested with the corresponding procedures to validate and select the best options for the implementation.

What we have achieved?

Electrochemical process and downstream

- Production:
 - Vanillin from commercial kraft lignin up to 6 %wt of yield (three times higher than the actual commercial process and 91% effectiveness, comparing with the theoretical highest yield calculated).
 - Propyl adipic acid production: 60% of yield.
 - Both reactions to larger electrode surface and consequently a larger area was established without significant changes regarding yield or selectivity.
- Downstream: lab tests were done using different single module filtration:
 - Single module filtration: Selectivities around 85% for lignin and up to 75% for different phenolic compounds
 - Coupling with ion exchange resins: tuning the solvent condition, nearly 100% of the mono aromatic phenols could be recovered.

Thank you for the attention

